Generatives Deep Learning

Generatives Deep Learning

Generative Modelle haben sich zu einem der spannendsten Themenbereiche der Künstlichen Intelligenz entwickelt: Mit generativem Deep Learning ist es inzwischen möglich, einer Maschine das Malen, Schreiben oder auch das Komponieren von Musik beizubringen - kreative Fähigkeiten, die bisher dem Menschen vorbehalten waren. Mit diesem praxisnahen Buch können Data Scientists einige der eindrucksvollsten generativen Deep-Learning-Modelle nachbilden wie z.B. Generative Adversarial Networks (GANs), Variational Autoencoder (VAEs), Encoder-Decoder- sowie World-Modelle. David Foster veranschaulicht die Funktionsweise jeder Methode, beginnend mit den Grundlagen des Deep Learning mit Keras, bevor er zu einigen der modernsten Algorithmen auf diesem Gebiet vorstößt. Die zahlreichen praktischen Beispiele und Tipps helfen dem Leser herauszufinden, wie seine Modelle noch effizienter lernen und noch kreativer werden können.

Download Now

Author
Publisher
Release Date
ISBN
Pages 310 pages
Rating 4/5 (75 users)

More Books:

Generatives Deep Learning
Language: de
Pages: 310
Authors: David Foster
Categories:
Type: BOOK - Published: 2020 - Publisher:

Generative Modelle haben sich zu einem der spannendsten Themenbereiche der Künstlichen Intelligenz entwickelt: Mit generativem Deep Learning ist es inzwischen
Generative Deep Learning
Language: en
Pages: 330
Authors: David Foster
Categories: Computers
Type: BOOK - Published: 2019-06-28 - Publisher: "O'Reilly Media, Inc."

Generative modeling is one of the hottest topics in AI. It’s now possible to teach a machine to excel at human endeavors such as painting, writing, and compos
Generative Deep Learning
Language: en
Pages: 330
Authors: David Foster
Categories: Computers
Type: BOOK - Published: 2019-06-28 - Publisher: O'Reilly Media

Generative modeling is one of the hottest topics in AI. It’s now possible to teach a machine to excel at human endeavors such as painting, writing, and compos
Generative Adversarial Networks for Image-to-Image Translation
Language: en
Pages: 444
Authors: Arun Solanki
Categories: Science
Type: BOOK - Published: 2021-06-22 - Publisher: Academic Press

Generative Adversarial Networks (GAN) have started a revolution in Deep Learning, and today GAN is one of the most researched topics in Artificial Intelligence.
Generative Adversarial Networks with Python
Language: en
Pages: 652
Authors: Jason Brownlee
Categories: Computers
Type: BOOK - Published: 2019-07-11 - Publisher: Machine Learning Mastery

Step-by-step tutorials on generative adversarial networks in python for image synthesis and image translation.
GANs in Action
Language: en
Pages: 240
Authors: Vladimir Bok
Categories: Computers
Type: BOOK - Published: 2019-09-09 - Publisher: Simon and Schuster

Deep learning systems have gotten really great at identifying patterns in text, images, and video. But applications that create realistic images, natural senten
Generative Adversarial Networks Projects
Language: en
Pages: 316
Authors: Kailash Ahirwar
Categories: Computers
Type: BOOK - Published: 2019-01-31 - Publisher: Packt Publishing Ltd

In this book, we will use different complexities of datasets in order to build end-to-end projects. With every chapter, the level of complexity and operations w
Learning Generative Adversarial Networks
Language: en
Pages: 180
Authors: Kuntal Ganguly
Categories: Computers
Type: BOOK - Published: 2017-10-30 - Publisher:

Build image generation and semi-supervised models using Generative Adversarial NetworksAbout This Book* Understand the buzz surrounding Generative Adversarial N
Hands-On Generative Adversarial Networks with Keras
Language: en
Pages: 272
Authors: Rafael Valle
Categories: Computers
Type: BOOK - Published: 2019-05-03 - Publisher: Packt Publishing Ltd

Develop generative models for a variety of real-world use-cases and deploy them to production Key Features Discover various GAN architectures using Python and K
Deep Generative Modeling
Language: en
Pages:
Authors: Jakub M. Tomczak
Categories:
Type: BOOK - Published: - Publisher: Springer Nature